Open-source text embedding model that outperforms OpenAI models on key benchmarks
A large context length text encoder that surpasses OpenAI text-embedding-ada-002 and text-embedding-3-small performance on short and long context tasks. Specialized for generating text embeddings, semantic search, and RAG applications.
137 million
8192 tokens
Ideal for retrieval-augmented generation (RAG), semantic search, clustering, and document similarity tasks.
Multilingual
Installation:
pip install tinfoil
Inference:
from tinfoil import TinfoilAI
client = TinfoilAI(
enclave="models.default.tinfoil.sh",
repo="tinfoilsh/default-models-nitro",
api_key="YOUR_API_KEY",
)
chat_completion = client.chat.completions.create(
messages=[
{
"role": "user",
"content": "Hello!",
}
],
model="nomic-embed-text",
)
print(chat_completion.choices[0].message.content)